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Classical Coulomb systems in d dimensions (d~> 2) with a periodic boundary 
condition, period W, in the direction x (a/ are considered. With the other 
directions of the confining volume of length L, it is shown that if the system 
is in a conducting phase, then the "strip" free energy kTfw, f w =  
-limL ~ o~ L (d- 1~ log Z, has the large- W expansion 

(d /2 -1 )F(d /2 -1 )  . . . . . .  ( 1 ) 

where kTf~ is the bulk free energy per unit volume, ~(x) denotes the Riemann 
zeta function, and F(x) denotes the gamma function. With 1/W identified as kT, 
this result is precisely the low-temperature behavior of the free energy of a 
( d -  1)-dimensional Debye solid. This fact is explained in terms of an equiva- 
lence between the Coulomb gas and quantum fields. Also, the expansion is 
verified for some exactly solved models of Coulomb systems in two dimensions. 

KEY WORDS: Coulomb systems; finite-size corrections; sine-Gordon field 
theory. 

1. I N T R O D U C T I O N  A N D  S U M M A R Y  

1.1. The  Str ip  Free Energy at a C o n f o r m a l  Cri t ical  Point  

O n e  of  the  f u n d a m e n t a l  p red i c t ions  of  the  t h e o r y  of  c o n f o r m a l  cr i t ical  

po in t s  in two  d i m e n s i o n s  is the  f ini te-size c o r r e c t i o n  to the  str ip free energy.  
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Specifically, consider a lattice model with the parameters chosen to 
correspond to bulk critically, but in a strip geometry of length L and width 
W (the number of rows of the lattice) wrapped around a cylinder. Then the 
free energy kTfw per unit length 

1 
fw  = - lim log Z (1.1) L~ooL 

has the large-W behavior ~ 

f w~ Wf ~ - ~  + - ~  (1.2) 

where kWf~ is the bulk free energy per unit volume and c is the central 
charge of the Virasoro algebra of the underlying continuous field theory. 
Equivalently, for low temperatures T the specific heat C per unit volume of 
a conformally invariant one-dimensional quantum system has the behavior 

C ~ ~ck2T/3hv (1.3) 

where the dispersion relation of the low-lying excitations is assumed to be 
of the form o) ~ vk. 

In contrast to (1.2), away from critically the strip free energy kTfw has 
the large-W behavior 

f w ~  Wf~ + O(e W/z) (1.4) 

where X is the correlation length. Qualitatively, the different behaviors (1.2) 
and (1.4) are attributable to the divergence of the correlation length at 
criticality. 

1.2. Object ive and Plan of the Paper 

In this paper we will consider the large-W expansion of the analogue 
of (1.1) for general classical Coulomb systems in dimensions d >/2. Periodic 
boundary conditions are imposed in one direction, x (a) say, and the system 
has length W in this direction. The "strip" free energy kTfw is then 
defined as 

1 
fw = - l i r a  ~ log Z (1.5) 

where L is the length of each side of the confining volume in each of the 
directions x(i),..., x (d 1) 
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A Coulomb system in its conduction phase has a finite correlation 
length and is certainly not critical. However, in Section 2 we provide a 
general argument which shows that in the conducting phase, for d~> 2, the 
free energy (1.5) has a universal large-W expansion 

(d/2-1)F(d/2-1) ( 1 ) 
f w ~ W f ~ +  rcdnWd_ ~ ~(d)+O ~ (1.6) 

where ~(d) is the Riemann zeta function 

~(d) = ~ (1.7) 
n = l  

and P(x) is the gamma function. In Section 3 the result (1.6) for d =  2 is 
verified in some special cases. These are the two-dimensional, one-compo- 
nent and two-component plasmas, at the special coupling 7 : 2, where 

7 = q2/~T (1.8) 

for which exact results are known. 

1.3. Re la t ionsh ip  to  the  Free Field 

The result (1.6) has an interpretation in terms of quantum fields. 
Consider a d-dimensional Coulomb gas with the particles constrained on 
lines along, say, the x (d) direction and forming a ( d -  1)-dimensional lattice. 
Furthermore, suppose that in the direction of x (d) the system is periodic of 
period W. Then, using the Gaussian transformation, (3) we have that for 
small fugacity 

Z(/r n(kT= 1/W) 
~(d) ( W ) :  (1.9) 
- ~ ~  Z ~ - ~ ) ( k r :  1/W) 

where z-(J) denotes the grand partition function of the d-dimensional C G  

Coulomb gas, while Z~ d- ~) and 7 (d- i) denote the partition function of an ~ F  

interacting quantum field theory and the free field theory, respectively, with 
the Hamiltonians of the field theories defined on a (d-1)-dimensional  
lattice. Note the relationship between the temperature T of the quantum 
field theory and the width W of the periodic boundary of the Coulomb gas 
as indicated in (1.9). As an explicit example of the identity (1.9), when the 
Coulomb gas consists of positive and negative charges of equal magnitude, 
the interacting quantum field is the sine-Gordon theory. (4) 
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The identity (1.9) when combined with the free energy expansion (1.6) 
implies that for low temperatures T, 

C~q- ')( r)  - C(Id-1)( T) ~ d ( d -  1)(d/2 - 1) V( d / 2 -  1) ~(d) n-d/2kdT ~- ~ 

(1.10) 

where C~-1)  and C~ d-~) denote the specific heats per unit volume of the 
free and interacting fields in (1.9), respectively. Here we have deduced the 
large-W behavior of the grand partition function from the large-W expan- 
sion of the partition function. This is possible since the thermodynamic 
relationship between the free energy and the grand potential implies 

\--~--~-} ~ (1.11) 

where f2 ~v denotes the grand potential per unit area A of the nonperiodic 
directions, v denotes the average number of particles per unit A, and # 
denotes the chemical potential. 

The crucial observation, which in turn allows the expansion (1.6) to be 
easily understood within the context of quantum fields, is that the right- 
hand side of (1.10) is precisely C~-I ) (T) .  To see this, we note that since 
the free field is a Bose system with dispersion relation ~o ~ Ik], as Ikt ~ 0, 
its low-temperature properties are that of a (d- l ) -d imens iona l  Debye 
solid. In particular, the total energy E is given by 

k• 
(Ok 

E =  Eo + exp (c%/kT) -  I 

v~_ , f d k  Ikl 
~ E0 @ (1.12) JR d-,  (2~c) d - x  exp(Ikh/kT)- 1 

Using spherical coordinates, the integral in (1.12) is easily evaluated to give 

( d -  1)! Sd_l~(d ) (kT) ~ (1.13) 

where 

2re(d- 1)/2 
(1.14) sa_l - V ( ( d -  1)/2) 

is the surface area of a (d-1)-dimensional  sphere and e is the energy per 
volume. Differentiating (1.13) with respect to T gives the specific heat, 
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which we can identify with the right-hand side of (1.10) after using the 
identity 

Q_d_~) 7E 1/2 ( d -  3)! (1.15) 
F - 2 d -  3 F ( d / 2  - 1 ) 

in (1.14). 
Note that for d =  2, the right-hand side of (1.10) gives the conformal 

result (1.3) with c = 1 rwhen d =  2, ( d / 2 -  1) F ( d / 2 -  1)= 1 and if(d)= zc2/6; 
we also have h = v = 1 ]. This is consistent with the above discussion, as a 
central charge c = 1 corresponds to the free field in 1 + 1 dimension. (~'2) 

In contrast to the polynomial approach to zero of the specific heat of 
the free field, the specific heat of the interacting field should decrease to 
zero with the temperature exponentially fast, provided the Coulomb gas is 
in a conducting phase. This is a consequence of the exponential decay of 
the correlations in the conducting phase. (5) The correlation length is thus 
finite, which, from the identity (1.9), implies that there is a gap between 
the energy of the ground state and the energy of the first excited state. 
The identity (1.9) thus explains why although the Coulomb gas in the 
conducting phase is not a critical system, its strip free energy behaves 
analogously to that of a critical system: the behavior of the free energy is 
governed by that of the free field, which is a critical system, but the correla- 
tions are determined by the properties of a massive field theory, which is 
not critical. 

2. FREE E N E R G Y  S U M  RULE 

We are interested in general n-component Coulomb systems in which 
the components interact via the d-dimensional (d~>2) Coulomb potential 

"x(d)~ Oswt ,, where x(a)=(x (~), x(2),..., x(a)).  In the direction x (d) a periodic 
boundary condition period W is imposed. The potential is then given by 
the summation 

~0 ~v(X (a)) = qs~(]x(d)p) (2.1) 

(1) l) x(a) n W ) - q b o o ( O  ..... O, n W ) ]  + E ~ 6 ~ ( x  ..... x (~ , + 
n =  o o  

n ~ O  

where ~( ]x(d) [ )  is the Coulomb potential in flee boundary conditions 

--log ]x(2)], d =  2 
r ix(d)/ (a-2), d > 2  (2.2) 

822/63/3-4-5 
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The second term in the summand of (2.1) corresponds to the subtraction 
of the self-energy of the infinite array of periodic images. 

Due to the singularity of the Coulomb potential at small distances, to 
obtain well-defined thermodynamics, it is necessary to regularize q~(Ix(d)k) 
at the origin by the addition of a short-range potential ~b~(Ix(d~l). Alter- 
natively, the positive and negative charges may be restricted to separate 
subdomains. For  definiteness it will be assumed that the potential has been 
modified at short distances, and this will be indicated by use of the super- 
script r, so we will write ~((r) ix~d) I), for example. However, our results are 
still valid if the opposite charges are restricted to separate subdomains. 

We will confine the system to a box of length W in the direction x (J) 
and of lengths L in the directions x (1~ ..... x (a ~. The n different charge 
species will be taken to have charges qQ~,, o: = 1,..., n, where q is the "unit" 
charge, and the coordinates of a particle of species ~ will be denoted by 
xy)(e),  j = 1,..., N~,, where N~ is the number of particles of species c~. Global 
charge neutrality is assumed, which together with an appropriately 
regularized potential, should ensure the existence of the thermodynamic 
limit. 

With the above definitions and specifications, the "strip" free energy 
(1.5) is given by 

yw= z- log II 
t_ ~ 1  V 

where 7 is defined by (1.8), the volume of each integration is L d 1 |  W, 
and 

Hw='~ ~ ~ ~U~ ~, Q~,Qrq~w(xk(r) (a,(?)_x)d)(cQ) (2.4) 
~ = 1  7 = 1  j = l  k = l  

(here the asterisk on the final summation denotes that if c~ = 7, the term 
j =  k is to be omitted). 

Rather than studying the large-W behavior of (2.3) directly, we will 
study the behavior of the partial derivative O f w / ~ W .  To calculate the 
partial derivative, we note that both the volume V and potential qSw are 
functions of W. However, by changing variables 

x (d) = W X  (d) (2.5) 

in the direction x (a), the dependence of V on W can be removed. Denoting 
the position vector x (d) with this change of variables by X (a) and the 
volume V by V ( l~ = L d- 1 | [0, 1 ]), we thus have 
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8W P + lira dX (d) dY (d) 
L ~  2 k T L  d-1 r 

( 8  (b(~)(X(d) y(d))) ,,~(a) y(a)) (2.6) • ~ - C w t A  , 

where C w ( X  (d), y(d)) denotes the charge-charge correlation defined with 
the change of variables (2.5) (see, e.g., ref. 6 for the explicit definition of this 
quantity), and p denotes the bulk density. Changing back to the original 
variables, we thus have 

8 f  w p + l i m  1 dy(d , 

where 
,x(d) y(d)) x ~ w(X (a)-  y(d)) C w t  , (2.7) 

8 ~/,(~)(X(a ) _ y(d)) x(dl-xI~l/w (2.8) ~, w ( x ( d ) -  y(d)) = a-w 
y(d) = y ( d ) / w  

In the directions x (j), j =  1,..., d - 1 ,  since we are taking L--, ~ ,  the 
charge-charge correlation is a function of the difference x ( j ) -  y(J), so that 
the double integration can be reduced to a single integration. Also, since 
the x (a) direction is periodic, this is true for j = d .  Thus, without any 
approximation, (2.7) can be rewritten as 

8fw W 
f dx (d) ~w(X (d)) Cw(x (a)) (2.9) 

8 w = - P + -2ff-T v 

It thus remains to expand the derivative of the potential and the 
charge-charge correlations for large W. At this stage we make an assump- 
tion in our argument: the dependence of the charge-charge correlation on 
W decreases exponentially for large W. This assumption is supported by 
the expected exponential decay of the correlations in all directions with 
periodic boundary conditions. On the other hand, the derivative of the 
potential can be expanded in inverse powers of W. A short calculation 
using (2.1) and (2.2) shows 

1 (x(a)) 2 qO~(ix(d)] ) d - 2  (x(a)) 2 
~'w(x(d)) W rx(d)I W Ix(N)IN 

(d -2)  ((d) 
_ W d+' { ( d _ 2 ) ( d _ l ) ( x ( d ) ) 2  d[(x(1))2+ . . .  _ ~ _ ( X  d 1)2"]} 

( ' )  + 0 ~ (2.10) 
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where ~(d) denotes the Riemann zeta function as defined by (1.7) and qO}(r) 
is the derivative of the short-range potential. For d =  2 the factor ( d - 2 )  
multiplying the second term and the same factor outside the brackets {-.. } 
(but not the one inside) are to be replaced by 1. 

Substituting (2.10) in (2.9), we obtain 

afw= Ofw 
#W ~W w=~ 

d--1 

-dEf  j=l  d 
where 

(d-2) ((d) I 2kTW ~ ( d -  2)(d-  1) f~ dx(~(x~'2~) 2 C~(x ~'~) 

dx(Cl)( x(J))2 C~(x(a)) l --k O ( wl-~ ) (2.11) 

c~W w_~ = - P + 2 ~ J ~  dx(d) 

[ (x(d))2 2" (x(d))2~ 
• Ix<d)l ~(Ix~>l)-(d- ) ~ J  C~(x<~) (2.12) 

For d =  2 all factors of ( d -  2) except the one multiplying ( d -  1 ) are to be 
replaced by 1. Our final task is thus to evaluate the integrals in (2.11). 
Their value is given by the Stillinger-Lovett second moment sum rule (see, 
e.g., ref. 7), which states that for a Coulomb system in its conducting phase 

f dx(d)(x(P))2 C~(x(d)) 2kT - - - - ,  p = 1, 2, . . . ,  d ( 2 . 1 3 )  
d K d 

where ~c a is such that the Fourier transform of q~([x(a)[) is ~d/[kl 2. 
Explicitly (see, e.g., ref. 5) 

47zd/2 
Ka (2.14) V( d/2 - 1 ) 

where F(x) denotes the gamma function. Substituting (2.13) in (2.11) and 
antidifferentiating with respect to W, we obtain (1.6). 

The working only requires minor modification to include the case 
when the system is in a dielectric phase, characterized by a finite static 
dielectric constant ~. The Stillinger-Lovett condition (2.11 ) then reads ~7~ 

fR dx(d'(x(P',2C~(x(d~)-- 2kT(l- - ! )  (2.15, 
Ka 2 

so the only change needed to the sum rule (1.6) is the inclusion of the 
factor ( 1 -  l/e) in the finite-size correction. Similarly, the only required 
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alteration to the formula (1.10) is the inclusion of the factor ( 1 - I / e )  
on the right-hand side. Recalling that the exact value of CF(T) is given by 
e ~ o% (1.10) thus gives 

C1(T) ~ (I/e) d ( d -  1)(d/2-  1) F ( d / 2 -  1) ((d) 7(.-d/2kdTd 1 (2.16) 

From the discussion in Section 1.2, we can conclude that the interacting 
quantum field theory is now massless. 

3. V E R I F I C A T I O N  OF THE S U M  RULE 

3.1. Two-D imens iona l ,  O n e - C o m p o n e n t  Plasma at y = 2  

The derivation of (1.6) has been given for general n-component 
Coulomb systems, n~>2. A one-component system can be obtained by 
considering a two-component system of N particles of charge q and N' 
particles of charge - q', and taking the limit N'  --* oe, q' -~ 0 with Nq = N'q' 
so that the system is overall charge neutral. The species of infinite 
particle density then forms a perfect gas, the free energy of which must be 
subtracted in the limiting procedure to obtain the free energy of the one- 
component system. Also 

Coo(x (d)) -+ q2p~)(x) (3.1) 

r denotes the truncated two-particle distribution of the mobile where P(2~ 
species. Hence, with p now denoting the particle density of the mobile 
species, and the short-range potential ~b s identically zero, (2.12) reads 

afw d -  2 l"  (x(d))2 
8W w = ~  = - P -  Tk T  J~d dx(~ C~(x (~)) (3.2) 

where for d = 2  the factor d - 2  is to be replaced by 1. For d = 2  the 
potential (2.1) can be summed to give (8'9) 

~w(x,  y) = - log[ ts inh ~(x + iy)/W] (W/n)] (3.3) 

Using this potential, the free energy of the one-component strip system at 
the special coupling 7 = 2 has been evaluated exactly (s~ with the result 

f w= W( l p log p/2~ 2) + 7r/6 W (3.4) 

This is in agreement with the sum rule (1.6) with d =  2, and has the further 
remarkable that all additional correction terms are identically zero. 



500 Forrester 

The result (2.10) can also be tested. Since the system in the bulk is 
rotationally invariant, 

C~ = fR2 dx(2) (x(l))2 C~176 (3.5) 
;~2 Ix(2)l 2 ]x(2)12 

dx (2) 

so that their common value is given by their mean value, which is 

1 
f~2 dx(2) C~176162 (3.6) 

5 

But by (3.1) and the perfect screening sum rule,/7) (3.6) is equal to 

_q2 
2 p (3.7) 

The sum rule (3.2) thus reduces to 

•W w=oo = - p  

With 7 = 2, this result agrees with that which can be obtained from the 
exact result (3.4) (note that p = v/W, where v = NIL is a constant in the 
partial derivative). 

3.2. T w o i D i m e n s i o n a l ,  T w o - C o m p o n e n t  Plasma at  y = 2 

The grand partition function ~-'~2 for this system has recently been 
evaluated exactly. ~ To stop collapse at small distances the positive charges 
were confined to equally spaced lines in the periodic direction (here the y 
direction) with x coordinate nL/M2, n =  l,..., M2, while the negative 
charges were confined to the lines with x coordinate (n-02)L/M2, where 
0 < ~b2 < 1. (Note: the x and y directions have been interchanged here with 
respect to the coordinates used in ref. 9; consequently, L and W are also 
interchanged). With the domain thus defined and r denoting the fugacity, 
the exact evaluation of the grand partition function is ~9) 

f i  a42 [ e-Z.(1 2~b2) ] 

~"~2 = I1 1 + (2%~) 2 2(cosh Zp - cos 0~) (3.9) 

where 

Zp = rca2(2P - 1 )/W, a 2 = L/M2 (3.10) 
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and the 0~ are the solutions of an equation, given explicitly in ref. 9, which 
has its solutions uniformly distributed on [0, hi.  

In the limit L, M 2-- 0% a 2 constant, we obtain a strip of width W 
with periodic boundary conditions. From the general formalism of statisti- 
cal mechanics we know that for large systems 

kTlog Z = # ( N ) - F  (3.11) 

where F i s  the total free energy, # is the chemical potential, and ( N )  is the 
average number of particles. Thus the strip free energy k T f w  is given by 

f . ,= u(N) /L~r-  l i m  1 log Z (3.12) 

From (3.9) and the fact that the 0~ are uniform in the interval [0, n] we 
have the exact result 

j i m  1 ~ _  1 fo [ Z log_ - do log 1 + 2 
p =  --oo 

e Z p ( l  2q~2) 7 

2(cosh Z o - cos 0) J 
(3.13) 

To verify (1.6), we thus require the large-W expansion of (3.13). This task 
can be accomplished by writing the right-hand side of (3.13) as 

1 lira I(N, L ) -  dOlog[2(cosh Z p - c o s  0 (3.14) 
Tea  2 N ~ oo p = N 

where 

N 

I(N, L)  = ~ dO log[2(cosh Z o - cos 0) + (2nr ~ e -zp(1-202)] (3.15) 
p =  N '  

for the sum I(N, L)  can be analyzed using a slight variant of the Euler- 
Maclaurin formula, while the summand in the final term of (3.14) is easily 
evaluated according to the formula 

fo dO log(2 cosh Z ,  - 2 cos O) = n [Zpl (3.16) 

The variation of the Euler-Maclaurin formula required is specified by 
the following result. 
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T h e o r e m  1. 
assume that f ( Z )  is real for Z real. Then 

Let f ( Z )  be analytic in the strip a ~< Re(Z)~< N and 

f p -  = d t f ( t ) + 2  dt I m f ( a + i t )  
p = a + 1 1 -~- ff2zvt 

f o d t  Im f ( N  + it) 
- 2 1 + e 2~t (3.17) 

This result can be proved, using contour integration, in the same way as 
the usual Euler-Maclaurin formula, which transforms 

N 1 
t i p )  (3.18) 

p~a 

(see, e.g., ref. 10 for this derivation). 
To apply Theorem 1 to the summation (3.15), it is first necessary to 

study the argument of the logarithm in the summand as a function of 
complex Zp and locate its zeros. This is straightforward, and we find that 
there exists a value a0 such that 

f ( Z ) =  dOlog{2(cosh27ra2Z/W_cosO)+(27r~)2e-2~(1 202) a2z/w} 

(3.19) 

is analytic for IRe(Z)I >~ a0. Thus, we can apply Theorem 1 to transform 

1 lim ~ f p -  - dO log(2 cosh Z p -  cos 0) (3.20) 
7ga 2 N~oo p=a0+l 

with f ( Z )  given by (3.19). A short calculation, which uses the result (3.16) 
and the evaluation 

f0 ~v l ~2 d t l + e  ~ 12 (3.21) 

then gives that (3.20) is equal to 

( f ~  fO T~202 ~ 1 ds dO g(s ,  O) + 11 - 12W] 
Yea2 o 

(3.22) 

where 
(2*C~) 2 e 27za2 s(1 2~2)/' W 

g(s, 0)= 1 + (3.23) 
2(cosh 2 ~ a e s / W -  cos 0) 
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and 

f o  Im f ( a  o + it) 11 = 2 dt 1 + e 2~t (3.24) 

A similar transformation applies to (3.20) with the p summation 
ranging from - N +  1 to - a 0 ,  which together with (3.22) gives that (3.14) 
can be rewritten as 

{;% o,_ ;a ;: 
7 ~ a  2 - -  a 

+ ~ f p - - dO log(2 cosh Z ,  - 2 cos 0) 
p = --a0 + 1 

j 7~2a2 "( 
+ I , -  1 - 1 ~  j- (3.25) 

Here g(s, O) is given by (3.23), f ( Z )  by (3.19), I1 is given by (3.24), and 

~ Im f ( - a o  + it) 
J1 = 2 dt 1 + e 2~t (3.26) 

It is straightforward to expand (3.25) in inverse powers of W. Again using 
(3.21) and also the simple summation 

(p - 1/2) 2 = ~a[(2a) 2 -  1] (3.27) 
p--  - - a + l  

we thus find that for large W 

l i r a - l o g 2 2 ~  Wpo~-~--w+O (3.28) 
L ~ c o  L 

where 

- 1  ~ ~ I 1+ 2(co~-t-~oos0)]e t(1 2~2 ) (3.29) p~ 2(~a2)2 f o dt fo d01og ( 2 ~ )  2 

Substituting (3.28) in (3.12), we thus have 

f w ~  W ( p # -  Po~) +-d-~ + O -~5 (3.30) 

where p is the particle density. This is in precise agreement with (1.6) when 
d = 2 .  
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